POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name			
Selected topics in mathematics II			
Course			
Field of study		Year/Semester	
Automatic Control and Robotics		1/2	
Area of study (specialization)		Profile of study	
		general academic	
Level of study		Course offered in	
First-cycle studies		English	
Form of study		Requirements	
full-time		compulsory	
Number of hours			
Lecture	Laboratory classes	s Other (e.g. online)	
15			
Tutorials	Projects/seminars	;	
15			
Number of credit points			
2			
Lecturers			
Responsible for the course/lecturer:		Responsible for the course/lecturer:	
dr hab. Maciej Ciesielski			
email: maciej.ciesielski@put.poznar	ı.pl		
tel. 616652839			
Faculty of Control Robotics and Elec	trical		
Engineering			
ul. Piotrowo 3A, 60-965 Poznań			
Prerequisites			

The knowledge from the area of linear algebra and calculus [K1_W01 (P6S_WG)].

The abilities of solving some problems of linear algebra and calculus [K1_U01 (P6S_UW)].

Awareness of the necessity to improve the knowledge and expertise, readiness to undertake a cooperation in the team [K1_K01 (P6S_KK)].

Course objective

The goal of the subject is to attain the knowledge from the area of the selected topics in mathematics and to get the skills that allow to apply the obtained knowledge to analize the mathematical problems.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

Knows and understands in an advanced level selected facts, objects and phenomena, as well as methods and theories explaining the complex relations between them, constituting basic general knowledge of mathematics including algebra, geometry, analysis, probabilistic and elements of discrete mathematics and logic [K1_W01 (P6S_WG)].

Skills

Is able to work individually and in a team; is able to plan and organize work – both individually and in a team; is able to estimate the time needed to complete a task; is able to develop and implement a work schedule ensuring that deadlines are met [K1_U02 (P6S_U0)].

The graduate is able to determine and use models of the selected mathematical problems as well as to

use them for the analysis and design of automation and robotics systems [K1_U05 (P6S_UW)].

Social competences

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture:

- grading knowledge and abilities showed in an written exam

Exercises:

- testing knowledge and preparation to exercises,
- awarding practical knowledge obtained during the previous exercies and lectures,
- grading knowledge and abilities related with calculations,
- test for exercises and/or written elaboration (that can be made partially outside of exercises)

Programme content

- 1. Normed spaces, Hilbert spaces, linear operator.
- 2. Orthogonal functions and orthonormal functions, Gram-Schmidt procedure.
- 3. Fourier series, Fourier transform.
- 4. Theorem Bessel's inequality.
- 5. Legendre differential equation, Hermite differential equation.

6. Integral equation, Fredholm integral equation of the first and second kind, Volterra integral equation, Abel integral equation.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 7. Methods for finding a solution of the selected linear integral equation.
- 8. Gamma function and Bessel function.
- 9. Gradient operator, divergence operator, rotation operator, Laplace transform.

Teaching methods

Lectures – the lecture is organized with the multimedia presentations and complemeted with many examples, showing an application of the presented issues.

Exercises – discussing open problems, comprehensive analysis for selected problems in mathematics, initiation open discussion devoted to methods which might be used to solve problems related to selected topis in mathematics, grading homeworks.

Bibliography

Basic

- 1. Wstęp do analizy funkcjonalnej, J. Musielak, PWN 1989
- 2. Elementy analizy wektorowej, M. Gewert, Z. Skoczylas, GIS 2012
- 3. Równania całkowe, M. Krasnosielski, A. Koszelew, S. Michlin, PWN 1972
- 4. Elementary partial differential equations, R. Gribben, Van Nostrand Reinhold 1975

Additional

- 1. Beginning partial differential equations, P. O'Neil, 2008
- 2. Linear and nonlinear integral equations methods and applications, A. Wazwaz, Springer 2011

Breakdown of average student's workload

	Hours	ECTS
Total workload	60	2,0
Classes requiring direct contact with the teacher	30	1,0
Student's own work (literature studies, preparation for	30	1,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate